Structure Reports
 Online

ISSN 1600-5368

Bronya R. Clare, Claire S. McInnes and Allan G. Blackman*

Department of Chemistry, University of Otago, PO Box 56, Dunedin, New Zealand

Correspondence e-mail:
blackman@alkali.otago.ac.nz

Key indicators

Single-crystal X-ray study
$T=85 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.003 \AA$
R factor $=0.014$
$w R$ factor $=0.036$
Data-to-parameter ratio $=18.8$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
位

[^0] Printed in Great Britain - all rights reserved

Acta Crystallographica Section E

Bis(2,2'-bipyridine- $\kappa^{2} N, N^{\prime}$)platinum(II) bis(perchlorate)

The title complex, $\left[\mathrm{Pt}\left(\mathrm{C}_{10} \mathrm{H}_{8} \mathrm{~N}_{2}\right)_{2}\right]\left(\mathrm{ClO}_{4}\right)_{2}$, adopts a squareplanar geometry in which all four N -atom donors are strictly coplanar as the Pt ion lies on an inversion centre. However, the $2,2^{\prime}$-bipyridine ligand deviates significantly from planarity, as demonstrated by the angle of $20.52(11)^{\circ}$ between the mean planes of the two pyridine rings.

Comment

The title complex, (I) (Fig. 1), was obtained during a study of the reactivity of $\left[\mathrm{Pt}\left(\mathrm{C}_{10} \mathrm{H}_{8} \mathrm{~N}_{2}\right)_{2}\right]^{2+}$ in aqueous alkaline solution (McInnes et al., 2003). Complex (I) crystallizes in the triclinic space group $P \overline{1}$ with the Pt ion lying on an inversion centre, thus requiring it to be strictly coplanar with the four attached N atoms. The $\mathrm{Pt}-\mathrm{N}$ distances [2.0227 (18) and 2.0292 (17) \AA] are similar to those found in $\left[\mathrm{Pt}\left(\mathrm{C}_{10} \mathrm{H}_{8} \mathrm{~N}_{2}\right)_{2}\right]\left(\mathrm{NO}_{3}\right)_{2} \cdot \mathrm{H}_{2} \mathrm{O}$ (Hazell et al., 1986) and $\left[\mathrm{Pt}\left(\mathrm{C}_{10} \mathrm{H}_{8} \mathrm{~N}_{2}\right)_{2}\right]\left(\mathrm{CF}_{3} \mathrm{SO}_{3}\right)_{2}$ (Fedotova et al., 2003), and are typical of those found in Pt complexes containing pyridine ligands (mean $=2.064 \AA, \mathrm{SD}=0.074 \AA$ for 997 structurally characterized complexes and 2214 individual $\mathrm{Pt}-\mathrm{N}$ distances; Cambridge Structural Database, Version 5.26 of November 2004 (Allen, 2002)].

The 2,2'-bipyridine ligands display a bow distortion (Fig. 2) with a remarkably large angle of $20.52(11)^{\circ}$ between the mean planes of the two rings (Hazell, 2004). A similar distortion is seen in the trifluoromethanesulfonate salt of the complex (Fedotova et al., 2003) and presumably prevents the close inter-ligand approach of atoms H 1 and H 10 (attached to C 1 and C10, respectively). It is tempting to speculate that the strain inherent in such a distortion is responsible for the unusual behaviour of $\left[\operatorname{Pt}\left(\mathrm{C}_{10} \mathrm{H}_{8} \mathrm{~N}_{2}\right)_{2}\right]^{2+}$ in aqueous alkaline solution, allowing facile coordination of hydroxide ion to give a pseudo-five-coordinate complex (McInnes et al., 2003).

There are weak π-stacking interactions throughout the three-dimensional structure (Fig. 3), with centroid-to-centroid distances between the pyridine rings of 3.703 (3) ($-1-x,-y$,

Received 9 September 2005 Accepted 14 September 2005 Online 21 September 2005

Figure 1
The structure of the cation of (I), with displacement ellipsoids drawn at the 50% probability level. [Symmetry code for unlabelled atoms: $-x,-y$, $-z$.

Figure 2
View of the cation of (I), emphasizing the bow distortion of the $2,2^{\prime}$ bipyridine ligands.

Figure 3
Packing, viewed down the a axis. Close interactions are indicated as dashed lines.
$-z$) and $3.924(3) \AA(-x,-y, 1-z)$. The perchlorate ions are also involved in anion $-\pi$ interactions, with O1-centroid (at $1+x, y, 1+z$) and O 4 -centroid (at $-x, 1-y, 1-z$) distances of 3.064 (3) and 3.356 (3) \AA, respectively.

Experimental

Complex (I) precipitated on addition of one drop of $6 \mathrm{M} \mathrm{NaClO}_{4}(\mathrm{aq})$ to a solution of $\left[\operatorname{Pt}\left(\mathrm{C}_{10} \mathrm{H}_{8} \mathrm{~N}_{2}\right)_{2}\right]\left(\mathrm{NO}_{3}\right)_{2} \cdot \mathrm{H}_{2} \mathrm{O}(53 \mathrm{mg})$, prepared
according to McInnes et al. (2003) in water (1 ml) to which one equivalent of $1 \mathrm{M} \mathrm{NaOH}(\mathrm{aq})(84 \mu \mathrm{l})$ had been added. Dilution to approximately 20 ml with hot water and subsequent slow cooling gave (I) as small pale-yellow crystals.

Crystal data

$\left[\mathrm{Pt}\left(\mathrm{C}_{10} \mathrm{H}_{8} \mathrm{~N}_{2}\right)_{2}\right]\left(\mathrm{ClO}_{4}\right)_{2}$
$M_{r}=706.35$
Triclinic, $P \overline{1}$
$a=7.811$ (5) \AA
$b=8.621(5) \AA$
$c=9.054(5) \AA$
$\alpha=72.972(5)^{\circ}$
$\beta=86.553(5)^{\circ}$
$\gamma=64.960(5)^{\circ}$
$V=526.7(5) \AA^{3}$

Data collection

Bruker Kappa-APEX-II areadetector diffractometer
φ and ω scans
Absorption correction: multi-scan (SADABS; Bruker, 2001)
$T_{\text {min }}=0.361, T_{\text {max }}=0.572$
11349 measured reflections

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.014$
$w R\left(F^{2}\right)=0.036$
$S=1.08$
3010 reflections
160 parameters
H-atom parameters constrained

$$
\begin{aligned}
& Z=1 \\
& D_{x}=2.227 \mathrm{Mg} \mathrm{~m}^{-3}
\end{aligned}
$$

$$
\text { Mo } K \alpha \text { radiation }
$$

$$
\text { Cell parameters from } 5644
$$

reflections

$$
\theta=2.4-33.0^{\circ}
$$

$$
\mu=6.97 \mathrm{~mm}^{-1}
$$

$$
T=85(2) \mathrm{K}
$$

Plate, pale-yellow
$0.32 \times 0.16 \times 0.08 \mathrm{~mm}$

3010 independent reflections
3010 reflections with $I>2 \sigma(I)$

$$
R_{\mathrm{int}}=0.028
$$

$$
\theta_{\max }=33.2^{\circ}
$$

$$
h=-7 \rightarrow 10
$$

$$
k=-11 \rightarrow 12
$$

$$
l=-13 \rightarrow 13
$$

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0182 P)^{2}\right. \\
& \quad+0.2101 P] \\
& \text { where } P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }<0.001 \\
& \Delta \rho_{\max }=1.19 \mathrm{e}^{-3} \\
& \Delta \rho_{\min }=-1.34 \mathrm{e}^{-3}
\end{aligned}
$$

All H atoms were included in the riding-model approximation, with $\mathrm{C}-\mathrm{H}=0.93 \AA$ and $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})$. The highest residual peak in the difference map is $0.79 \AA$ from atom Pt1 and the deepest hole is $0.81 \AA$ from atom Pt1.

Data collection: APEXII (Bruker, 2004); cell refinement: APEXII and SAINT (Bruker, 2001); data reduction: SAINT; program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP3 (Farrugia, 1997) and SHELXTL (Bruker, 2001); software used to prepare material for publication: WinGX (Farrugia, 1999).

The Department of Chemistry of the University of Otago is thanked for its support of this research.

References

Allen, F. H. (2002). Acta Cryst. B58, 380-388.
Altomare, A., Burla, M. C., Camalli, M., Cascarano, G., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. \& Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.
Bruker (2001). SAINT, SADABS and SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.
Bruker (2004). APEXII. Version 1.0-27 Bruker AXS Inc., Madison, Wisconsin, USA.
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
Fedotova, T. N., Minacheva, L. Kh. \& Kuznetsova, G. N. (2003). Zh. Neorg. Khim. 48, 417-425.
Hazell, A. (2004). Polyhedron, 23, 2081-2083.
Hazell, A., Simonsen, O. \& Wernberg, O. (1986). Acta Cryst. C42, 1707-1711.
McInnes, C. S., Clare, B. R., Redmond, W. R., Clark, C. R. \& Blackman, A. G. (2003). Dalton Trans. pp. 2215-2218.

Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.

[^0]: (C) 2005 International Union of Crystallography

